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Abstract—Elastic-plastic relations which are subjected to the constraint of incompressibility, that is
pertinent to undrained behavior of soils, are assessed and compared with the relations for drained
behavior, The tangent relations for mixed contro! variables (total stress and strain components) are
established explicitly. The criterion signalling plastic loading, and clastic unloading, is considered
in particular. A criterion for unique response, as expressed in terms of clastic and plastic loading,
is formulated as a condition on the particular plastic modulus that corresponds to undrained
behavior. Stability is discussed in terms of appropriate critical values of the plastic modulus. It
appears that, for a frictional material, dilatancy has a stabilizing effect whereas contractancy may
be destabilizing compared to drained behavior.

INTRODUCTION

The behavior of an elastic-plastic material is governed by bilinear tangent modulus
relations, and the forms of these relations depend on whether plastic loading or elastic
unloading takes place. While the tangent stiffness and compliance relations in plastic loading
depend only on the actual values of the state variables (stress and/or strain components
and hardening variables), the loading/unloading criterion depends also on the choice of
control variables (stress and/or strain) components and involves the incremental change of
these variables. The control variables are those mixed stress and strain components which
are prescribed (at a certain instant) and are used as input to the constitutive relation. The
response variables, which are energy-conjugated to the control variables, are thus obtained
as output from the constitutive relation via integration along a given loading/unloading
path. A few examples in two-invariant stress space, for drained as well as undrained
behavior and for a specific elastic-plastic model, were discussed by Mroz er al. (1979).

It is clear that the concept of control and response variables has a meaning in con-
junction with the treatment of boundary value problems only if the state is homogeneous.
This is traditionally assumed for a specimen in laboratory experiments, such as plane strain
and conventional triaxial tests, prior to bifurcation and the development of localized
deformation modes. The entire discussion in this paper refers to such homogeneous, that
is, constitutive behavior.

A quite general analysis of the consequences of the particular choice of state and
control variables for drained behavior was presented by Klisinski ez a/. (1991), and we shall
briefly restate some results under the specific assumption that the yield surface is represented
in stress space. Then we shall focus on undrained behavior, which is pertinent to soil
behavior when drainage through the boundary of a soil body is prevented. In this paper
undrained behavior is taken as synonymous with complete (pointwise) incompressibility
regardless of the magnitude of the mean effective stress, cf. Mroz et al. (1979). This
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assumption is quite realistic since the bulk modulus of water is nearly two or three mag-
nitudes higher than that of the soil skeleton. When the permeability is large. such as for
sand. it is clear that pointwise undrained behavior cannot be ensured unless the state is
quite homogeneous throughout the body under consideration. Strain localization under
undrained behavior was discussed by Rice (1975), Rice and Cleary (1976) and Vardoulakis
(1985).

It is intuitively clear that the tangent compliance matrix must become singular due to
the incompressibility condition. In other words, it is anticipated that this condition causes
the deformation to vanish for a certain mode of change in the applied total stresses, i.e. the
material locks. Via a spectral analysis of the tangent compliance relation it will also be
shown in this paper that the stiffness is generally larger in the undrained than in the drained
situation. The specific requirements on the actual plasticity model for which a stabilizing
effect is obtained from the incompressibility constraint are also discussed.

The developed tangent relations do not only have a didactic value but have practical
significance in terms of a step-by-step procedure for truly finite increments, Such an explicit
integration technique is natural (but not necessarily the most efficient) within the framework
of a mixed finite element method, the description of which is outside the scope of this paper.
The incompressibility condition is then incorporated in a “strong”, i.e. exact. fashion. In
the more conventional coupled finite element formulation this condition is invoked in a
“weak” sense via a variational statement.

Matrix notation will be used throughout the paper. Sccond rank tensors are represented
by celumn vectors {(such as the cffective stress vector ), while fourth rank tensors are
represented by square matrices (such as the tangential compliance matrix for undrained
behavior, that is denoted C,,). Stresses and strains are taken to be positive in compression,
which differs from the conventional notation in continuum mechanics but conforms to
common practice in soil mechanies.

CONTROL VARIABLES - LOADING CONDITION IN PLASTICITY
In the theory of small deformations it is assumed that the totad strain rate ts decomposed
additively into elastic and plastic rates
§= 48" 0
The clastic part is given by the tangential relationships

£ =C, ¢=D% (2)

where C¢ and D¢ = (C°) "' are the matrices of tangential elastic compliance and stiffness
moduli respectively. We shall assume subsequently, without losing the essential features,
that C° and Df are constant matrices. Via the well-known effective stress principle in soil
mechanics, the effective stress a is related to the total stress s and the excess pore pressure
uas

g =§—ud (3)
where 8 is a vector representation of Kronecker's delta, and where it has been assumed that

the stresses are positive in compression. It is assumed that the plastically admissible stress
states g are contained in the convex set B

B = {6|F(6.x) <0} (4)
where F(o. k) is the yield function and F(s. k) = 0 represents the state boundary surface.

In order to allow for hardening/softening of the current yield surface, we have introduced
the column vector & representing components of the hardening/softening internal variables.
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Needless to say, elastic states are associated with F < 0, while plastic states are defined by
F=0.

The direction of £° is determined by the direction of a vector m which defines a general
non-associated flow rule

& = Am &)

where 4 > 0 is a scalar plastic multiplier. The evolution rule for x may, for a quite general
class of hardening rules, be postulated to be of the form

& = h(¢") = /h(m) (6)

where it is implied that h is a first degree homogeneous function. This homogeneity is
necessary in order to give a bilinear tangent modulus relation between the control and
response variables.

The well-known plastic loading criteria that apply at a plastic state, i.e. when F =0,
are as follows:

1>0. F=0, plastic loading (P)
[ =0, F=0, neutral loading (N)

A=0, F<0, eclastic unloading (E). ¥

These loading-unloading critcria can be summarized in the form of the Kuhn-Tucker
conditions:

1>0, Fg0, IF=0. (8)

These conditions arc completely general with respect to the choice of control variables
and/or lincar constraints that might be imposed on the stresses and strains.

While cither & or ¢ may be chosen as control variables for drained (14 = 0,6 = s) or
partly drained (v # 0,0 # s) behavior, it appears that not all strain components can be
chosen as control variables under undrained conditions. The reason is that the undrained
condition is assumed (sce the Introduction) to be represented by the linear incompressibility
constraint

£, =8=0 ©)

where g, is the volumetric strain. Complete stress control is defined by prescribing s, which
gives e and u as response variables.

As mentioned above, complete strain control is not possible for undrained behavior.
However, mixed control in terms of a combination of stress and strain components (or
rather their rates) is commonly adopted. For example, in conventional undrained triaxial
compression tests, the horizontal (confining) stress and the vertical strain are often chosen
as control variables, which immediately leaves the horizontal strain to be uniquely defined
by the incompressibility condition.

Subsequently we shall need the appropriate elastic tangent relationship between the
chosen control and response variables. If o and £ are decomposed into the energy conjugate
portions o, ¢, and ¢,, g, respectively, i.e.

) L 1
¢ = e | e = ) (19

then the relations (2) may be expressed as
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Assuming that s, and &, are the control variables. whereas &, and s. are the response
variables, we may partially invert eqns (11) to obtain the relationship

&1 e B[ ,
[m]'[sl %j[é] (12)

Ei, = i —Ci;(C3) " '(Ci)" = (D5)

Ej; = Ci(C3y) ™' = — (DY)~ 'DY;

E3 = —(E5)T

E:: = (C%) "' = D% —(D52)"(DS) "' D (13)

where

Since E, = (D5,) "' and E%, = (C%;) "' are positive definite, it can simply be shown that
E° is positive definite.

TANGENT RELATIONSHIPS UNDER DRAINED CONDITIONS

Stress and strain control

For completeness, we shali briefly derive the pertinent equations for drained behavior
(and partly drained behavior, when uis known), whereby we tfollow closely Klisinski et al,
(1990). The consistency condition in a plastic state is, with the notation n = 0F/de

, . OF\
v (s w
ok
which with the flow rule eqn (5) and the hardening rule eqn (6) can be rewritten as

F=n"6-Hi<0 (%)

where # is the generalized plastic modulus

o} T
H = —("F> h(m). (16)

Ok

Under stress control we can directly use eqn (15). The loading criteria (7) are then equivalent
with the conditions

2=%Md>0(m an
n'e =0 N) (18)
ng <0 (E) (19)

and it is clear that the conditions in (17), (18) and (19) are unambiguous only if H > 0.
This requirement is thus necessary and sufficient in order to ensure a unique drained
response under stress control. The consequent compliance modulus relation reads
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E=Ca=Cs (u=0) (20)

where C is the conventional tangent compliance matrix

1
C=C°+f~{mnT when F=0, n"s>0. 1)

Under strain control, on the other hand, 4 has to be expressed in terms of & via eqn (2),
whereby eqn (15) is replaced by

F=n"D%-Ki<0 (22)
where K is defined by
K= H+n"D'm. (23)
Similarly to the previous situation, 4 may be solved from eqn (22) when £ =0

l

—_ —niD%
i_KnDe 2%

and the loading criteria will be unambiguous only if K > 0. The pertinent stiffness modulus
relation is obtained with eqns (2) and (24)

§=Dé (i=0) (25)

where D is the tangent stiffness matrix
1
D=D- ED‘mn’D‘ when F=0, n'D%>0. (26)

Mixed control

When s,(=0,) and e, are chosen as the control variables it is necessary to express ¢,
in terms of these control variables via the elastic tangent relationship (12). The consistency
condition (15) then becomes, with the obvious notation n, = dF/de, and n, = 3F/da,,

F=nlé,+nle,~Hl=¢p—KIi<0 X))
where ¢ is the loading function
& = hlg, +nle, (28)
and K is the generalized plastic modulus under mixed control
K= H+nlES;m,. 29)
We have introduced the “transformed™ gradients of F under mixed control ;
i, =n,—Ef,n,, @, =Ejn,. (30)

The loading criteria become

SAS 29:3-G
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£=}£¢>o P 31
d=0 (N) (32)
¢ <0 (E) (33)

and the requirement for unambiguous criteria is, again, K > 0. The pertinent tangent
relationship at plastic loading, i.e. when F = 0 and ¢ > 0, is obtained with eqns (12) and

(31) as
é( _ Eil E!Z s(
L‘»J - [Ezz EJL‘J‘ G4

Upon introducing the “transformed™ flow vectors m, and rir, from m; and m, as in eqn
{30), we may express the tangent matrix E as
}. (35)

[E., E,z} _ [ i iz] I [ LIH
En Bl (B EnlT KL-mal -
It may simply be checked that the special cases of stress and strain control directly follow
from the present general case of mixed control by, respectively, the identifications
§, = §(¢, = &) and &, = §($, = §).

In the next section we shall derive the corresponding relations under the constraint of
incompressibility pertinent to undrained behavior.

})

i

2 2

>

]

2

TANGENT RELATIONSHIPS UNDER UNDRAINED CONDTIONS

Total stress control
It is possible to choose the total stress s as the control variable under the constraint of
&, being prescribed. From eqns (2), (3), (5) and (9) we obtain
£, =08 =8"(E+e") =8Ts—c utim, =0 (36)

where we have introduced the notations & = C°5, ¢ = 1/8"C*6 and m, = §"m. From eqn
(36) we can solve for u

= c(dT§+im,). 37N
Inserting eqn (37) into the effective stress principle eqn (3) gives
¢ = $§—ud = D°Cis—Acm,8 (38)
where C: is the singular (as proven later) “undrained elastic compliance matrix”
C.=C—cds". (39
This matrix is obtained by imposing the incompressibility condition within the elastic range.
Inserting & from eqn (38) into the consistency condition eqn (15) for plastic loading now
gives

F=n"6—Hi=a"DCs—H, =0 (40)

We may thus solve for the plastic multiplier



Characteristics of soil plasticity 369

L=b, (41

where H, is the “undrained plastic modulus™
H,=H+cnm,, n,=8n (42)
and ¢, is the “undrained loading function™
d. =n'DCS =nls. 43
From the definition of C in (39) we have obtained the “undrained gradient™ n, as
n, = n—-cnd (44)
which is a purely deviatoric tensor, i.e. its volumetric part is zero.
Similarly to the case of drained behavior, we conclude that H, > 0 is the proper

requirement for unique response, in which case ¢, > 0 signals plastic loading.
faserting £ from eqn (41) into the expression for a in eqn (37), we obtain for ¢, > 0

=c(d+ I;" mn,)'s. 45)

Combining this expression with the flow rule egn {5} we obtain, finally, the response variable
¢ via the compliance relationship

i = C,8 (46)

where C, is the undrained tangent compliance matrix

R B
Cu - Cn + [Iu m,n, (47)

and my, is defined like n, in eqn (44), i.c.
m, = m—cm,d. (48)
In the case of elastic unloading, ¢, < 0, we obtain (since 4 = 0)
= c8"S = § +c8 TS, (49)
where d denotes deviator, i.c. s, = s —s,,0 and s5,, = 8's/3. Morcover, we obtain
&= C§ (50)
which clearly shows that Cj is, in fact, the proper elastic modulus matrix for undrained
behavior.
Let us now consider a few important special cases :

Associated flow rule. In the case of an associated flow rule, m = n, we obtain from (45)
and @) forg, >0
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u=c(d+ }-;:nynu)ré (51)
C,=C+ Lnunf (52)
H,
where
H, = H+cn’. (53)

As in the drained case, C, becomes symmetrical.

Incompressible plastic flow. We now return to the general case of non-associated
plasticity defined by m # n. An important special case is incompressible plastic low, §? =0
orm, = 0, which is pertinent to cohesive materials for which the plastic potential is pressure-
independent. We obtain for ¢, > 0

u=cd"s (54)

and
C,=C - S
u u+ Ilmnu (5>)

where the fact that H, = H was uscd.

It is noted that, despite the absence of compressibility in the plastic portion of the
strain ratc, there is still a coupling between the incompressibility condition and the plastic
response that remains apparent in the total response. We also note that the excess pore
pressure development is identical to that for elastic response. However, for a completely
associated flow rule, i.c. when m = n, n, = 0, eqn (55) is further simplified to

¢ 1 T
C,=C+ Hnn (56)

subjected to the loading criterion ¢, = ¢ = n's > 0, which reduces to that of drained
behavior. In this particular case it is clear that the incompressibility condition only affects
the elastic compliance matrix C;.

Isotropic elusticity. The final special case is that the elastic response is linear and
isotropic, which is defined by

1 (.
= E([— 1667) + §7<55f (57)

where G and K are the shear and bulk modulus respectively. This gives § = §/3Kand ¢ = K.
Equation (39) gives

!
e — _ ([— 1887
C: = 3G (I—466") (58)

and it is simple to see that this matrix is singular.
Moreover, we obtain
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Fig. 1. Effective stress paths at undrained loading for contractant and dilatant behavior.

H, = H+Kn,m, (59)
n, =n, =n—n06/3, m, =m,. (60)
From eqns (37) and (41), or eqn (45) we obtain the development of excess pore pressure

. K
= St K2 = S0t i, (61)

and the development of effective pressure (mean effective stress) defined as p = a,,(=8"6/3)

. K
P=Gn=8y~ti=—~Kmdi=— i m, ¢, (62)

where
$. = njs. (63)

The different characteristic behavior that can be extracted from eqn (61) is shown in Fig.
1 for an arbitrarily applied stress path s(¢).

Consider a frictional material that is characterized by n, < 0, i.e. the yield surface is
of the “cone™ type. From eqn (§9) it follows that dilatant behavior (m, < 0) implies that
H, > H, while contractant behavior (m, > 0) implies that H, < H. When the hardening H
of the drained material has decreased to a value —Kn.m, > 0, we can expect that the
response of the contractant material will move into the softening regime (H, < 0), while
the dilatant material still hardens and continues to do so even when H < 0. For a cohesive
material, on the other hand, that is defined by n, = 0, we shall always have H, = H
and the hardening modulus is thus unaffected by the incompressibility condition. These
predictions are in good agreement with experimental findings.

Based on a simplified frictional model for an undrained layer, the dilatant hardening
effect was shown by Rice (1975), who calculated the tangent compliance modulus cor-
responding to applied shear stress while the normal stress was held constant. In other words,
a diagonal term of C, was calculated.

In the case of an associated flow rule, H, = H+ Knl, we conclude that H, > H always
and the undrained condition has a stabilizing effect independent of whether the behavior is
dilatant or contractant. This is the situation for the classical Cam-Clay models.

Finally, we shall comment on the loading criterion ¢, > 0, where ¢, is given in (63).
It appears that plastic loading can be judged entirely from the deviatoric portion of 3,
whereby this criterion resembles the drained behavior of a cohesive material in terms of the
effective stress rate d.
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Mixed control

Let us choose s, and ¢, as control varniables, whereby u, £, and s, become the response
variables. We then obtain

£ =616 +06%%. =0 (64

From the decompositions

o= ) LR An]

and the elastic tangent relationship (12). we may express the condition €, = 0 in (64) as
& =08 +0 6, —c i+, =0 (66)
where we have introduced the adjusted Kronecker deltas 8, and d, as
o, =E5,8,. 9.=40,-E 8, (67)

N r.- - - - . . 5 —
and #ry, = dym,, where my and m are still given as in eqn (30). Furthermore, we have used
the notation

¢y = 1/O1ES, 8. (68)
We may now solve for 1 from ¢gn (66) 1o obtain
=SS+ e+ i) (69)

where the plastic multiplier 4 is still to be calculated from the consistency condition at
plastic loading. Inscrting eqn (69) into the eflective stress principle (65) gives

a, = D5 K S, — ¢, 8,8 16, — deynin 8, (70)
where E5 is the (singular) undrained clastic compliance matrix

Al e 3 fl

Ej = Ejy—c0,0, (7
that resembles the compliance matrix C§ in eqn (39) valid for total stress control.

In order to use the consistency condition egn (27) it is also necessary to express 6, in
terms of the control variables §; and £, via the clastic tangent relationship (12). We then
obtain, after a few manipulations,

F=nle, +nte,—Hi=¢,~K,/<0 (72)
where ¢, is the undrained loading function
b, = 'iercl TELns +('.‘:“<'|’;n5:)|é: = '.1\'»-151 + 0,8, (73)
and we have introduced #,, = 81, and the undrained gradients

- - - T - - -
N, =0, —C 0. N, = “:“‘Cl"ng:- (74)

Furthermore. K, is the undrained generalized plastic modulus under mixed control
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Ku =H+ ngEezzm2+C|’;‘|vﬁ|v = K+C|’;l|vﬁlv (75)

where K is the drained modulus as given in eqn (29).
The loading criteria become

1

I= Ed’“ >0 (P) (76)
=0 (N) )
¢.<0 (E) (78)

and the requirement for unambiguous criteria is obviously that K, > 0.
Inserting 4 from eqn (76) into the expression for # in eqn (69), we obtain for ¢, > 0

1 ' 1 \'
11=C|(5|+F';'|Vﬁu|>§|+('|(52+ F';‘”ﬁuz) éz. (79)

Finally, combining this expression with the flow rule eqn (65) and inserting in eqns (12),
we obtain at plastic loading, i.e. when F = 0 and ¢, > 0, the pertinent tangent relationship

& E.i Euz(ls)
[sz]=[zuz. sm][gz] (80)

Eai Eao|_ [E Efnz] L [ ri, i) ﬁ-u.ﬁzz] &N
EuZl Eu22 N E:IZ :22 Ku —lhulﬁ:l _'iluZﬁ?ﬁ )

In addition to ES,, in (71) we have introduced the undrained elastic moduli

where

El. = Eenz“ﬁ‘s-ts} (82)
Ey = —(EL)" = E5 +¢,6,8] (83)
Ein = ES+¢,8,6]. (84)

The undrained plastic flow directions m,, and m,; are defined as in eqn (74), i.e.
m, =m,—cym, b8, M, =m,~-crmd,. (8%)
In the case of elastic unloading, ¢, < 0, we obtain (since 1 = 0) from eqn (69)

i=c (078, +61¢;) (86)

&) _ [E &,z][s]
.= P 87
[Sz] [Eﬁzn a L€ 67
Even in this case of mixed control for undrained behavior it may simply be checked

that the special case of total stress control directly follows through the identification
§| = S(B, = B‘)‘

and from (80)
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Remark : As mentioned already in the introduction it is not possible to use complete
strain control, since we must require ¢, < 2 in order for the expressions above to be valid.
This means that at least one normal strain component must be left as a response variable
in order not to overconstrain the strain rates by the undrained condition &, = 0.

Example of plasticity model : Drucker—Prager’s criterion

To illustrate general results, let us consider Drucker-Prager’s yield criterion with an
(unrealistic) associated flow rule. This criterion, which is pertinent to, typically, non-
cohesive granular materials, can be represented as

F=1Il,—ke}, =0 (88)

where [], is the second invariant of the effective stress deviator, o, is the mean effective
stress (as used above), whereas k > 0 represents the angle of internal friction and describes
the slope of the yield surface in the stress meridian plane.

The stress and strain vectors of interest are represented by their principal values

s = [SI.S‘,.. -":]T' g = [0", G,r* 0:]T~ £ = [va e,yv E:JT (89)

which is the relevant situation in a triaxial test. The yield criterion in eqn (88) then takes
the explicit form

F=(0—-k)o,+0,+0)—(1+2k)o,.0,+0,6.+0.0,). (90)

Let us first consider the situation of complete stress control. The control variables are then
all components of s, whereas the response variables are all components of ¢ and the pore
pressure u. The vector 8, representing Kronecker’s delta, becomes simply

s =111 o

and the undrained elastic compliance matrix is given as, according to eqn (58),

L+ A R

v

= 2 —1. 92

C 3B 1 2 1 (92)
-1 =1 2

The gradient of the yield surface, n, is given as

20 -k)o,— (1 +2k)(o,+0,)
n=|2(l-k)g,—(1+2k)(o.+0,) 93)
20 —k)o.— (1 +2k)(o,+0,)

and the undrained gradient, n,, is the deviatoric part of n, according to eqn (60),

26, —0,—0,;
n,=|2g,—0.—0, 94)

26.—0,.—0,

y

which is the same as for von Mises’ criterion.
The undrained modulus, H,, is given as
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12Ek? ,
H,=H+ — (0. +0,+0.)" (95)
1-2¢ '
where the facts that n, = —6k and K = E/3(1 - 2r) were used.

Finally, the rate of pore pressure, 4, is given from eqn (51) as

,
= [g& (I_EI‘)H (o, +0, +a)n]r = S — (—z%}—{——-(a +o,+0.)b,  (96)

where ¢, is the loading function given in eqn (63).

Let us next consider the case when two stresses are controlled. while one strain
component (usually the vertical component in a practical situation) is allowed to change.
The control and response variables can then be chosen as

51,887 = [se.5,.6]7, [el.st]" = [ec.6,n5.]" N
and the relevant portions of Kronecker's delta are
s, =[L1]", &, =1 98)
Since the isotropic clastic compliance and stiffness matrices are

| I —¢ v E | —p i t
C= -] —p B DR ) R — - 99
4 -t | v (9 =20) v l—v v (99

- =r ! v v I—p
we obtain the mixed clastic matrix ES in eqn (12) as

(I—v*YE —v(1+0)/E —v
E =) —v(1+o)/E (1=0))JE -—v (100)
v v E

and, when undrained conditions are imposed,

(1+0)2E  —{+0)2E —12
Ei=|~(1+v)2E (1+v)2E -12 . (1on)
172 12 3E2(1+v)

The latter matrix was obtained from eqns (71) and (82)—(84) with ¢, = E/2(1 —20)(1 +v)
and

I
= T 6y=1-2.
2c.[l’l] , Oy=1-=2 (102)
The partitioned gradients n, and n, are obtained, according to eqn (93), as

. [7(1—/00 —(1+2k)(a, +a)] = 21—k — (142K (0, +0,)  (103)

Al =k)o, —~ (1 +2k)(o.+0,)

and the undrained transformed gradients f,, and f,, become, according to eqns (30) and
(74),
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. Jlo,—0, . 3E 5 104
n = — . 7 = 6. — - 3a.}.
ul 2 G'y—U_‘ + Ny 2(‘ +L‘)( a. Ty o’y) ( )

The generalized undrained plastic modulus, K,, is obtained from eqn (75) as

12Ek* 3E

K;=H+;*jWAmﬁmJuqﬁIBQ@—m—@f (105)

=2

and it is noted that K, > H, (pertinent to stress control) unless 6,40, = 20, in which case
K,=H,.
Finally, the rate of pore pressure, u. is given from eqn (79) as

T E .
12=<%6 +£'—/i n )s + —~~—f+i'~ﬁ Ay )€ (106)
IV Ku 1v*¥ul i 2(l+l') Ku Ivftuld fo
where A, is given as
n, = —4(l+o)k(o, +0a,+0.)— (1 -20)20.—0,—0,). (107)

ASSESSMENT OF STABILITY AND STIFFNESS FOR DRAINED AND UNDRAINED BEHAVIOR

Preliminarics
According to Hill (1958), a sufficient condition for local stability is that the second
order incremental work is positive, i.c.

¢'é>0 (108)

for all possible choices of the control variables. This condition leads to bounds on the
plastic modulus H, which were established by Klisinski er af. (1991) for the case of drained
behavior i.e. when there are no constraints of the strain or stress components. Because of the
kinematic constraint of incompressibility, the situation is somewhat different for undrained
behavior.

To simplify the analysis we shall only consider total stress control (since a tangent
stiffness formulation pertinent of strain control cannot be established for undrained
behavior due to singularity of C,). It can, in fact, be shown (as for drained behavior) that
this evaluation of stability in terms of bounds on H is completely independent of the
particular choice of mixed set of control variables. Hence, we shall consider conditions

"Co =6"Cé¢>0, $Cs=5"Cis>0 (109)

for all possible control variables in terms of the vectors ¢ and $, where C* and C; are the
symmetric parts of C and C, respectively. (The drained behavior is considered for compari-
son.) We shall thus establish conditions for which C* and C;, are positive definite, if possible.

Apart from stability it is of interest to assess the current stress—strain behavior (in
terms of compliance or stiffness) along a certain control path. Again, we only consider
stress control, and it is clear that the characteristic behavior is represented by the spectral
properties of the (generally non-symmetric) compliance matrices C and C, themselves (and
not their symmetric parts as for the stability assessment).
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Drained behavior
To assess stability we consider the eigenvalue problem

Cx; = 4Cx, i=12,....dim(C%) (110}

where, according to eqn (21),
C=C+ -l—~(mnr+nmr} (n
B 2H ‘
[t has been shown elsewhere, Runesson and Mroz (1989). that the eigenvalues are given as

!
Arp=1+ 0 lmlipfn), Fm'Dn)
=1, k=34, .  dim;m{C) (112)
where we have introduced the energy norm |la||3 = n"D*n. (It is noted that the eigenvalues
are not listed in order of increasing magnitude.) The condition for positive definite C* is
A, > 0, which gives the classical result, e.g. Mroz (1966), Maier and Hueckel (1979),

Runesson and Mroz (1989) and Klisinski et al. (1991), that H > H_, where H, is the critical
value

H, = {(Im],]nf, ~m'Dn) >0. (113)

In the special case of associated plasticity we obtain H, = 0.
The spectral properties of C are given from

Cy, = uCy,, i=12,....dim(C%) (114)

where C is still given by eqn (21). It can be shown that the eigenvalues are

‘u| = |+~‘I_7HITD°II
pe=1, k=2,3,...,dim(C). (115)

A limit state is defined by infinite compliance, (u, = oo}, which is obtained when H = 0.
The eigenvalues of the stiffness matrix D with respect to the matrix of elastic stifiness moduli
DF are clearly the inverse values of those in eqn (115). Hence, when A = 0 we conclude that
D is singular, as expected.

Undrained behavior
We shall first show that the matrix of elastic moduli C; defined in eqn (39) is singular
corresponding to the eigenvector z; = 8. This result is obtained immediately from
Cod=08—cbci'=0 (116)
where the fact that §76 = l/c, was used. Moreover, it is simple to show that z,,
k=2,3,...,dim(C"), that are defined by the orthogonality condition z;8 = 0, all cor-
respond to drained elastic response, i.e.

Ciz, =Cz, k=223,...,dim(C%). (117

For the eigenvalue problem
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Ciz, = v,Cz, (118)

we thus conclude that the eigenvalues are v, = Qand ¢, = 1 for i > 2.

In physical terms the singularity is activated by applying an isotropic total stress, which
will only result in increased pore pressure without any deformation. This follows from eqn
(49), since with § = 5,6 we obtain

i=$,. (119)

Stress changes along the *‘elastic™ eigenvectors do not produce any change in pore pressure,
since § = dz, gives

i=c8"za4=0 (120)

in view of the condition z]§ = 0.
Consider next the eigenvalue problem for elastic—-plastic behavior

Cx, = LCx,. i=1.2...,dim(C) (121)

where, according to eqn (48),

. | i .
C,=C—cd6"+ S (mgn! +n,m). (122
bt u
Even in this case it appears that X, = & is an cigenvector corresponding to singularity of
C}. This tollows from the arguments above for C and the fact that § is orthogonal to n,
as well as to m, defined in cqns (44) and (48), i.c.
nd=m'é=0. (123)
We shall now consider eigenvectors that are spanned by the vectors n, and m,,. This gives
the eigenvectors

nu —_— mu
Xy, za[)C( St ) a = const. (124)

- iy, lImgfi,
corresponding to the eigenvalues

. l -
Aay =1+ o (Imaliolin o + m;D’n,). (125)

The formal similarity with the expression in eqn (115) for 4, , pertinent to drained behavior
is noteworthy.
The remaining eigenvectors are orthogonal to § as well as to n, and m,,, i.c.

xfd=xin,=xm, =0, k>4 (126)
and correspond to 4, = I.
We have thus found all eigenvalues. Since 4, = 0 it is not possible to achieve the
condition that C} is positive definite. However, C;, is positive semi-definite whenever 4, > 0,
which gives the condition (similarly to the drained case) H, > H,. with

Huc = é(”mu“D“nu“D_mIDcnu) 2 0 (127)

Now, combining (127) with the definition of H, in eqn (42) we obtain



Charactenstics of soil plasticity 379

H. = i(lm,|n, [l p—m{Dn,) —cn.m,. (128)

Similarly to drained behavior, H,. = 0 forassociated plasticity. However, in order to achieve
this condition it is sufficient to require m, = n,, which behavior is denoted “undrained
associativity™ and is thus defined by

H.,=0, H, = —cnm,. (129)
The spectral properties of C, are given from
C.y.=uCy,. i=12,,....dim(C) (130)

where C, is still given by eqn (49). The eigenvalues are i, = 0 corresponding to isotropic
stress change, and p, = | (k = 3) corresponding to elastic response. The eigenvalue of
interest is

1
ur =1+ z-niD'm,. (131)

A limit state is obtained when H, = 0.
In order to assess the (possible) stabilizing effect from the undrained condition, we
shall consider an important special class of material behavior.

Isotropic elasticity and volumetric non-associativity. In the case of isotropic elasticity we
have the simplifications n, = nyand m, = my. Itis quite common that the non-associativity is
restricted to the volumetric behavior, i.e. ny = my. This is clearly a case of undrained
associativity defined in eqn (129) and we obtain

HY = —Kn,m, (132)

where index “u” stands for undrained behavior. It is interesting to note that, for the
frictional material defined by n, < 0, the observations made previously are confirmed that
dilatant behavior (m, < 0) is stabilizing and implies that H® < 0, whereas contractant
behavior (m, > 0) is destabilizing and implies that H > 0.

The corresponding value of H, for drained behavior given in eqn (113) is always non-
negative

HE = 3[QGng|* + Kn?) 2 2G 0] + Kmd) ' — 2Gng|* + Knym,)] > 0. (133)

It is clear that non-associativity has a destabilizing effect for both drained and undrained
behavior.

As to the stiffness properties, it appears that eqn (131), that is pertinent to undrained
conditions, gives

2G

A
e = U

g Indl? (134)
whereas the corresponding value under drained conditions is obtained from eqn (115)
) I 2
Ale, =14 ﬁ(ZGlndl +Kn,m,). (135)

It is simple to show that A%, < 19 . Furthermore, 1%, =0 whereas A9 =1,

min

A < A%, We may thus conclude from the spectral range that the incremental ﬂexnblhty
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is smaller for undrained than drained behavior provided the same point on the stress path
is considered.

SUMMARY AND CONCLUSIONS

Constitutive relations that are pertinent for modelling the behavior of elastic—plastic
material subjected to the constraint of incompressibility, such as undrained behavior of
highly impermeable soil. were developed and analyzed in this paper. For pure stress control
an “undrained plastic modulus™ H, is defined equivalently to the material plastic modulus
for drained response. The pertinent loading criterion, that signals either plastic loading or
elastic unloading. was derived. In complete analogy with drained behavior it turns out that
a unique response characterization requires that H, > 0.

The discussion was extended to the case of mixed control of a suitable set of total
stress and strain components, whereby an “undrained generalized plastic modulus™ K, is
substituted for A, in the assessment of response controllability. Explicit expression of the
pore pressure development was also given in terms of the control variables.

For a frictional material that is defined by a cone-type yield surface and which dilates,
it was concluded that the condition M, > 0 in stress control is satisficd even when the
material undergoes softening, whereas contractant behavior requires hardening. Thus, it
scems that dilatancy has a stabilizing effect whereas contractancy is destabilizing, which is
also in accordance with previous theoretical findings, e.g. Rice (1975), and with experimental
experience, Lade (1988). This important conclusion was also confirmed in the present paper
from a more formal discussion of the stability propertics, which was based on the spectral
propertics of the compliance matrix in the undrained (as well as the drained) mode. [t was
also shown that the most stable situation for undrained behavior is obtained for associated
plasticity, in which case the enitical value of the hardening modulus ts negative for a pressure-
dependent yield surface.
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